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1.0 INTRODUCTION

Conventional antenna receiving systems are susceptible to performance

degradation due to the presence of undesired noise signals (deliberate or

natural) that enter the system. Extensive research has been conducted in the

area of adaptive antenna arrays as a means of compensating for the inevitable

presence of these interference signals.

Adaptive arrays can provide a vital element of flexibility to a

communication system. They can respond to changes in the interference

environment by steering nulls and reducing sidelobes in the directions of the

interferences, while maintaining an acceptable level of response in the

direction of the desired signal. More importantly, they can do so without

prior information pertaining to the interfering signals. These features make

adaptive array systems very attractive for applications in which the

environment is changing or unknown. For example, it is quite possible that

very little descriptive information concerning an intentional jamming signal

will be available. Any system requiring such information could not

effectively compensate for the interference.

Adaptive arrays also have a reliability advantage over their conventional

counterparts. In a conventional array system, if a single sensor element

becomes inoperable, the characteristic gain pattern may be noticeably

affected, depending on the location of the non-working element and the total

number of sensor elements. In contrast, an adaptive array system positions,

nulls, and reduces sidelobes according to the monitored external

signal/interference environment. Therefore, if a sensor element became

incapacitated, the remaining operable elements would be adjusted to produce a

pattern that is similar to the original pattern. Simply stated, adaptive

array systems fail more gracefully than conventional receiving systems.

The heart of the adaptive array system is the controlling algorithm. It

determines not only the method that is used to adapt, but also the speed of

adaptation and the amount and complexity of hardware necessary to implement

the system. Some of the early pioneering work in the area of adaptive control

algorithms began in the 1960's. B. Widrow and others developed a self-

training, self-optimizing control algorithm known as the Least Mean Square

% r,
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(LMS) algorithm [1I. This algorithm uses gradient techniques to

asymptotically approach an optimal solution. At approximately the same time,

Howells and Applebaum were developing a sidelobe cancelling algorithm for

radar applications [2]. This algorithm exploited the fact that the signal of

interest was normally absent, and attempts to maximize a generalized signal-

to-noise ratio. Numerous algorithms were developed shortly thereafter. Among

the more common types are the Differential Steepest Descent algorithm,

constrained algorithms such as Griffiths' P-vector and Frost's Constrained

*LMS, and random search algorithms [3-5].

The direct matrix inversion and recursive processors represent a

significant departure from the above algorithms, and they were developed more

recently. Although their heavy computational load renders them impractical

*1 for many applications, the advancements in cheap, fast digital hardware have

spurred an increasing interest in these methods. Both methods involve finding

the inverse of the sample covariance matrix to determine an optimum weight

solution [7-9].

As mentioned, a wide variety of adaptive algorithms have been developed
and utilized. This fact suggests that there is no "clearly superior" adaptive

control algorithm that should be implemented without regard to the

application. In fact, the performances of adaptive control algorithms are

very application dependent. The selection of a specific algorithm is based on

many factors including the quantity of a priori information, the convergence

speed requirements, implementation cost considerations, and the transmission

medium, among others. The process of selecting a control algorithm is further

complicated by the fact that adaptive array systems are generally placed in

changing surroundings. These natural uncertainties often make it impossible

to analytically predetermine how well a specific algorithm will perform.

This, combined with the fact that it is often economically unreasonable to

build a system in order to test it, makes computer simulation a useful tool

for array evaluation.

The importance of application considerations has been stressed. This

study is concerned with the simulation of a communication system operating in

the HF frequency band. The HF band, which spans the 3-30 MHz range, is

commonly used in military communication systems, and has been modeled as a

-2-
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slowly varying channel. Other factors that played a significant role in the
algorithm selection process include:

- Knowledge of interleaved code is periodically available for reference

signal generation.

- Knowledge of the angle of arrival of the desired communication signal

is known a priori.

- Antenna array geometry.

Three adaptive control algorithms have been selected for computer

simulation in this study. They were selected on the basis of their usefulness

and applicability in the system of interest as well as the fact that they

-4 comprise a fairly representative set of adaptive algorithms in general. These

algorithms are:

1. Least Mean Square Algorithm

2. Constrained LMS Algorithm

3. Update Covariance Algorithm (recursive)

- The motivation for their selection as well as their attributes and

operation will be discussed in detail later in the report.

Once the control algorithms had been selected, attention was turned to

the development of the computer simulation models. The overall adaptive array

system model was defined first, followed by the software implementation of the

chosen control algorithms. In order to obtain relevant results regarding

* algorithm performance, it was imperative that the control algorithm be

isolated in the overall system model. In this way, identical environments

could be reproduced, and discrepancies in array performance could be

attributed solely to the differences in algorithms. It was also necessary to

define performance measures and develop a scheme to monitor the results in

order to make a comparative evaluation of the selected control algorithms.

The first section of this report is devoted to the definition of the

basic adaptive array system model. The principle system elements and their

-3-
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operation are explained, and common notation which will be used in following

discussions is presented.

Once these fundamental aspects have been examined, each of the selected

algorithms is discussed in detail. Each discussion will include the

motivations for that algorithm's selection, and a description of how the

algorithm operates. It will also contain an explanation of the simulation

model that has been used.

The next section gives a presentation of the testing procedure and all

parameters that must be specified. The signal models, performance measures,

and simulation processes will be explained. The final section presents the

results in the form of graphs and offers conclusions concerning the algorithm

recommendations.

-2's
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N

2.0 ADAPTIVE ARRAY SYSTEM MODEL .

The purpose of this section is to introduce the adaptive array system

model that is used throughout the study. Although such a model is explicitly

required for a computer simulation, it is primarily intended to aid in the

understanding of the qualities and objectives of the simulated array sytem. A

common representation of an adaptive array system is shown in Figure 2.1.

This basic model, while not possessing an abundance of detail, can be used to

examine the principle system elements and their functions.

Virtually all adaptive antenna array systems consist of three principle

components as depicted in Figure 2.1. These components include: 1) An array

of sensor elements; 2) A pattern-forming network; 3) An adaptive processor.

Although not explicitly shown, it is also important to realize that the system

is located in an environment in which the desired and deliberate jamming

signals impinge on the array at various angles of azimuth and elevation in the

presence of thermal noise. Each of the components will now be discussed.

2.1 Sensor Element Array

The array consists of N spatially separated sensor elements. Their

function is to monitor the external signal and interference environment and

distribute this information to the other system components. The sensor

elements should be chosen according to their ability to perform in the

specified medium. These elements can then be physically located in a planar %

configuration to produce a suitable gain pattern over the desired region. %

Care should be taken when choosing the type of sensor element and their

locations, as both factors place fundamental limitations on the ultimate

capability of the adaptive array system.

The output of each sensor element, xi(t), is simply the sum of the signal

components that arrive at that element.

xi(t) = si(t) + ni(t)

.N

p -5-
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where

si(t) is the desired signal component at element i

ni(t) is the combined noise components at element i from both deliberate

and natural sources.

Also note that components of the same signal will differ from element to

element due to phase delay caused by the spatial separation of the sensors.

The sensor element array model that has been utilized in this study

contains some differences with models used in much of the related

literature. The most notable departure from virtually every simulation

conducted, is the use of a dipole model for the sensor elements. The use of

isotropic elements is almost universal among simulated studies. Factors such

as frequency dependence and directional gain of the elements themselves can

then be ignored. Although using dipole elements complicates the model,

"reality" is not compromised as severely. Also, many simulations are limited

to linear array alignments. Such alignments make phase calculations almost %

trivial, but may inhibit the array's ability to distinguish signals on the

basis of elevation arrival angle.

2.2 Pattern-Forming Network

The pattern-forming network consists of N variable complex weights and a

summing device. The function of the network is very straightforward. It

accepts a set of weights from the adaptive processor and multiplies each of

them with their corresponding sensor element output. This multiplication can

be thought of as an amplitude and phase adjustment of the element outputs.

The complex weights can be written as

Wi A e (2.1)wi

where

2 2
A,1  (ewl (ImJW 1})

and

-7-
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-1

0 -tan (Im{wi}/Re{wi})

Thus, the output of the sensor element i is assigned a gain, Ai, ind delayed

by 8i radians at the discretion of the adaptive processor.

The sensor output/weight products are summed to produce the overall array

output signal, y(t), which can be written as

N T
y(t) i wi xi(t) x W (2.2)

where the column vectors x and w are defined as

xl(t) wl

x2 (t) w2

x x3 (t) w w3 (2.3)

• .

xN(t)J wN

Throughout the report, matrices will be denoted with an underscored capital

letter. Vectors will be denoted with an underscored lower case letter.

Complex conjugates will be assigned a superscript asterisk (*), and

transpositions will be denoted with a superscript "T". Scalar quantities will

be written as a lower case letter with no special notation.

2.3 Adaptive Processor

The adaptive processor controls the operation of the array system. It is

comprised of the control algorithm and any supplemental signal processing

components required by that particular algorithm. The adaptive processor uses

the sensor element and array system outputs to compute a new set of complex

weights. These weights are passed to the pattern-forming network to adjust

the amplitude and phase of the sensor element outputs. The resulting array

system response, which is hopefully acquiring a greater resemblance to the

desired communication signal, is then used by the adaptive processor to help

compute the next weighting vector.

... %-
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The variable complex weights are updated by the processor in such a way -.

that the array system output is optimized according to some specified

performance criterion. This criterion governs the control algorithm by

defining the parameters that are to be optimized through adaptation.

Different control algorithms have different performance criteria. In other

words, despite the fact that they are all trying to accomplish similar tasks,

algorithms strive for optimization in different ways. The following three

sections are devoted to the selected algorithms (processors), and include

explanations of what the algorithms are trying to accomplish and how they

'A. achieve their respective goals.

Before leaving this section, it should be mentioned that although the

array system model was depicted using continuous time representation, computer

simulations require discrete samples. In the discussions and derivations thatA.

- follow, signals will be represented as a sampled value. Also, in order to

represent bandpass signals, complex lowpass equivalent representation (CLPE)

has been utilized. A discussion of CLPE is given in Appendix A.

1%1

.1,q
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3.0 LEAST MEAN SQUARE (LMS) ALGORITHM

The LMS algorithm was introduced and developed by Widrow in the mid

1960's [11. It uses gradient estimation techniques to arrive at an optimal

solution. The L[MS algorithm is probably the most popular of all adaptive

algorithms. It has been used in a variety of adaptive applications including

channel equalization, noise cancellation, .-id antenna array systems. It has

V.. become somewhat of a standard and is frequently used as a performance

barometer for other adaptive algorithms studies.

It is important to note that the LMS algorithm requires the generation of

m"/2 an error signal, which in turn requires the generation of a reference

signal. This reference signal represents the signal that it is desired to

receive and it is generated using some approximation technique. For some

applications, the reference signal requirement is unattainable, and the LIMS

algorithm cannot be used. Communication systems in general, however, lend

themselves to reference generation, and systems that involve the use of known

codes have been shown to be particularly conducive to the generation of a

satisfactory reference signal [11-13].

3.1 Motivation for Selection of LMS Algorithm

As its popularity suggests, the LMS algorithm has many attractive

qualities. Probably its most attractive quality is its overall simplicity.

Few computations must be performed in order to update the complex weights. It

takes on the order of 2N computations, where N is the number of sensor

elements, to update the weights. Also, the adjustment of one weight does not

affect the adjustment of another. Therefore, the weights can be updated

simultaneously. This keeps processing time to a minimum.

.) A natural outgrowth of the LMS algorithm's computational simplicity is

the relatively small hardware requirements. It can be easily implemented in

either analog or digital form. For many applications, the LMS algorithm

represents a good trade off between speed of convergence* and implementational

The speed of convergence is measured relative to the number of times the

complex weighting vector must be updated before the antenna pattern has
converged.

-1.0-
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feasibility. As a general rule, algorithms with rapid convergence rates are

very complex. The LMS algorithm, while not possessing convergence rates as

rapid as those offered by recursive processors, has rates that are

satisfactory for most slowly varying environments.

Finally, the operation of the LMS algorithm is straightforward and easily

understood. The algorithmic steps are clear and well defined. This along

with the other factors mentioned, make the LMS algorithm a prime candidate for

our study.

The operation of the 1.S algorithm is governed by the Mean Square Error

performance criterion. Before discussing the inner workings of the L14S

algorithm, this criterion will be explained as it adds valuable insight into

how the algorithm operates.

.4.

3.2 Mean Square Error (MSE) Performance Criterion

The LMS-controlled adaptive array system is shown in Figure 3.1 and will

be used to present the fundamental manner in which the MSE criterion is

used. For the moment, assume that the reference signal, d(k), is the actual

'4 value that is sent by the desired communicator. An error signal, e(k), is

defined as the difference between what was sent and what was received.

e(k) = d(k) - y(k) - d(k) - w T x(k) (3.1)

The LMS algorithm uses this error signal, along with the sensor element output ,

information, to calculate a new set of complex weight values. The weights are

computed such that the resulting error signal, and thus the MSE is reduced.

As this process is repeated, the mean square error approaches zero, signifying

that the value that was received was approximately equal to the value that was

sent.

Although correct in principle, the preceding discussion has one blatant

* flaw. If the actual value sent by the communicator was truly known at the

receiver, no information would be conveyed and there would certainly be no

need to perform complicated adaptive techniques. The desired signal cannot be a

known with certainty at the receiver and therefore muist be estimated. As

mentioned, systems using known codes, such as the current system of interest,

have been shown to be particularly adept at reference signal generation.
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3.3 MSE Performance Criterion Derivation

The goal of the LMS algorithm is to adjust the complex weights in order

to minimize mean square error. An expression of mean square error as a

function of the weight values will now be derived.

The required error signal is defined as the difference between the

generated reference signal and the adaptive array output signal.
.'.

e(k) = d(k) - y(k) = d(k) - wT x(k)

The square of the error signal can then be written as
V

e2 (k) = d 2(k) - 2d(k) xT(k) w + wT x(k) xT(k) w (3.2)

Taking the expected value of both sides yields

Eje 2 (k)} - Efd 2 (k)} + wElx(k) x (k)J.! - 2E~d(k)xT (k)} f (3-3)

The above equation represents the mean square error as a function of the

complex weights.O

In order to simplify the notation, define the vector p as the cross

correlation between the desired response and the sensor element output and the

matrix R as the input correlation matrix.

d(k)xl(k)

d(k)x2(k)

p E (3.4)

'5

d(k)xN(k)

where d(k) is the scalar desired response and xi(k) is the output of sensor

element i.
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Xl(k) Xl(k) Xl(k) x2(k) .... x (k) X(k)

R E . (3.5)

XN(k) x1(k) XN(k) x2(k) .... XN(k) XN(k) -a.

Once again, xi(k) is the output of sensor element i. The mean square error

can then be defined as

MSE E{e 2(k)} = w R w - 2p w+ E{d 2(k)} (3.6)

It is very important to note that the MSE is a positive quadratic function

of the weights. This function is a concave hyperparabaloidal (bowl-shaped)

surface that contains no local minima. This is a performance surface and is

depicted in Figure 3.2.

Notice that the minimum mean square error corresponds to the global 4, %

.1minimum of the performance function. It is also known that the gradient of

the function is zero at this minimum. Therefore, in order to find the optimal

weight settings (the weights which produce minimum mean square error), the

gradient of the function is found and set equal to zero.

-, The gradient is obtained by differentiating the MSE function with respect

to the weights.

awa

=-2p + 2 Rw (3.7)

3 fE e 2 (k)l ..
a.w

a~a, N

Setting the gradient equal to zero, the optimal weights are found.

-14-
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-2p + 2Rw 0

n0PTIMUM =-R p (3.8)

. This is an extremely important result and represents the matrix form of the

Weiner-Hopf equation.

The Weiner-Hopf equation defines the optimal weight settings in the mean

square sense. Intuitively, it may seem unreasonable to prescribe a

complicated adaptive technique when an optimal solution is known. As will be

shown, however, the solution is the problem, and the LMS algorithm is a method

:e to avoid actually computing the Weiner-Hopf equation.

3.4 LMS Algorithm Description

* An actual computation of the Weiner-Hopf equation would require the

explicit measurement of all correlation functions, since it is unreasonable to

assume that the correlations of deliberate interferences will be known. This

" is a plausible task but it would require large amounts of hardware. The

requirement of matrix inversion, which for most arrays of practical size is

computationally intensive, is more prohibitive. In fact, for most

applications of reasonable magnitude, the process of directly inverting the

correlation matrix is entirely unfeasible. The LMS algorithm is simply a

practical method of finding close approximations to the Weiner-Hopf equation.

The LMS algorithm is an implementation of the Method of Steepest

Descent. Using this method, the updated weight vector is equal to the past

weight vector plus a change that is proportional to the negative gradient.

I," w(k + 1) - w(k) - pV (3.9)

The parameter U is a factor that controls stability and convergence rate.

Updating the weights can be thought of as descending along the aforementioned..

performance surface in an attempt to reach the "bottom of the bowl."

-16-
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The LMS algorithm avoids explicit correlation function measurement and C.

5matrix inversion by utilizing a crude but effective gradient estimate. Recall e

that the gradient of the MSE function is given by
-2

w1

=-2p + 2 Rw

(2,
3Efr (k~

aw N

The LMS algorithm estimates the gradient by using the square of a single error

sample instead of the MSE and differentiating with respect to the weights.

2a (k)
w

V = - 2 e(k) x (k) (3.10)

a 2(k)

L N

Using this gradient estimate in place of the true gradient in (3.9) yields the

LMS algorithm.

w(k + I) = w(k) + 2we(k) x (k) (3.11)

Notice that this algorithm does not require squaring, averaging or

differentiation. The gradient estimate can be shown to be an unbiased

estimator of the true gradient.

-17-
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4,

EJj= E{-2e(k) x (k)1

= E{-2[d(k) - y(k)] x (k)

- -2E~d(k) x(k) - x(k) x (k) w(k)}

- 2(Rw-p) = V (3.11)

The LMS algorithm does not require the angle of arrival of the desired signal

to be known a priori. If it is unknown, the weights are normally initialized

to an arbitrary value of 1 < 00.

i < 00

i < 00

w(0) (3.12)

i < 00

If the angle of arrival of the desired signal is known, however, the initial

weights can be chosen such that the initial antenna pattern effectively

"looks" directly at the desired signal.

-ja
e

e
d,

4

w ) (3.13)
r.."

.O.

- " N 4."

e
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where -Qi is a phase value that exactly compensates for the phase delay due to

the spatial separation of the sensor elements. These values can be easily

V calculated if the angle of arrival and element locations are known.

3.5 L1MS Software Modules

Simulation of the LMS algorithm requires two routines. The weights are

initialized using the routine WEIGHTINIT. The initial weights are given as

wi(O) = exp(-jQi) i = 1, 2, .-., N

where Q is the phase of the desired signal at element i.
i

The routine LMS updates the weights according to the update equations

that have been given. It requires both the sensor element outputs and the

overall array system output to adjust the weights. It also requires a

%! reference signal. In this model, it has been assumed that a known code is

available. It is assumed that the code at the receiver is synchronized with
the code (preamble) that is being sent. The channel model introduces delay,

however, so the reference signal must be delayed accordingly if the

synchronization assumption is to be satisfied.

The FORTRAN source code listings are given in Appendix C. Figure 3.3

depicts the modules discussed and illustrates the primary input and output

parameters. The variable names used in the program are shown in parenthesis.

The LMS algorithm is not without its drawbacks. It does not converge

terribly fast, but more importantly, it requires the presence of a reference

6 signal to adapt. In cases such as this one where the reference signal is not

always present, the weight values would have to be effectively frozen during

the signal's absence. Environmental changes in this period could not be

tracked.

The severity of this problem will be dependent upon the rapidity of

change of the application medium. A slowly varying medium should pose no

prohibitive difficulties. An adaptive algorithm which does not encounter the

problem of a required reference signal will now be examined.

*1' -19-
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LMS SOFTWARE MODULES

type of algorithm WEIGHT INITIALIZATION
(ALGTYP)

element location SUBROUTINE initial weights (COMPWT)
(X,Y) WEIGHTINIT

arrival angle of

communication

signal
(PHI, THETA)

weights -LMS ALGORITHM
(COMPWT)

sensor outputs SUBROUTINE updated weights (COMPWT)
"'-N (OUTPUT) LMS

array output
(WTDSUM)

Figure 3.3 LMS Software Modules

-20-

., . . , , , ..,...,.' .'.p,.. . ..,. . . . . . ..... . .



4.0 CONSTRAINED LMS ALGORITHM

The second control algorithm selected for this study is the Constrained

LMS algorithm. It was developed by 0. L. Frost [5 ]. The name is somewhat

misleading as it suggests that this algorithm is simply a permutation of the p..

LMS algorithm. This is definitely not the case, and some of their contrasting

features are illustrated below in Table 3.1. The name may have been derived -

from the fact that, like the LMS algorithm, the Constrained LMS algorithm uses

a gradient approach.

4.1 Motivation for Selection

The primary advantage of the Constrained LMS algorithm is the elimination r

of the reference signal requirement. No reference signal must be present for

the algorithm to reduce the effects of interferers or respond to changes in

the environment. Complicated reference generation techniques can be

avoided. It is, however, required that the arrival angle of the desired

signal be known a priori. Secondly, the Constrained LMS algorithm requires

relatively few computations in order to update the variable weights. Finally,

many adaptive processors tend to degrade their own mainbeam response when

attempting to place nulls in the directions of interferences. By explicitly

constraining the response, the Constrained LMS algorithm prevents this from ""

occurring.

4.2 Constrained LMS Algorithm Description

As mentioned, the Constrained LMS algorithm places fundamental limits on

the adaptive array's response in the direction of interest (look direction).

Throughout the adaptation process, the response in the direction of arrival of

the desired signal will remain unchanged. The individual variable weights are

allowed to take on any values in order to null out interferences provided that

the look direction response is maintained. This type of algorithm allows the

*1 array to look in the direction of the desired signal (whether it is present or

not) while ignoring signals arriving from other directions. It is true that

an interfering signal that enters the array system at virtually the same angle

as the desired signal will disturb the system. The same could be said for all

algorithms because they rely on spatial separation to discriminate.

-21-
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Table 3.1

Features of Adaptive Algorithms
5,

, Feature LMS Constrained LMS

Reference Signal Required Not Required I

Angle of Arrival
of Communication Not Required Required

.1 Signal __.

Performance

Criterion M.S.E. Maximum-Likelihood

Optimization Minimize Minimize output
Technique Error power according

to constraints

".". -22- "
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The adaptive array system model which will be used to explain the r

operation of the Constrained LMS algorithm was presented in [5] and is shown
in Figure 4.1. Although this simulation deals with narrowband signals, the

original broadband processor model will be used in this discussion. The model

consists of N elements and J taps per element. When narrowband signals are

used a simplified model results and it will be described later. Also shown in

Figure 4.1 is an "equivalent processor" which aids in the understanding of how

the Constrained LMS algorithm operates.

From Figure 4.1, it is evident that the Constrained LMS processor

contains an additional component. This component, known as a spatial

correction filter, performs a task that is often regarded as preprocessing.

This filter compensates for the physical misalignment of the sensor elements %

by introducing individual delays so that the desired signal effectively

'p. arrives at the same time at each element. In other words, the spatial

correction filter guarantees that the communication signal component is

identical at each element output. The delays can be calculated from the array

geometry and the arrival angle of the desired signal. Noise components

arriving at the sensors at other angles will not produce equal components at

the element outputs.

From the desired signal's vantage point, the processors in Figure 4.1 are

equivalent. Each adaptive weight in the equivalent processor is simply equal

to the sum of the weights in the vertical column above it. With these values,

the signal components at the respective processor outputs are identical. By

assigning a value to these equivalent weights, a desired frequency response in

the look direction is selected. This introduces J constraint conditions.

Since there are N X J adjustable weights, the remaining N X J - J degrees of

freedom can be used to minimize the non-look direction noise power.

Minimizing non-look direction noise power is equivalent to minimizing total

output power because, regardless of how the weights are adjusted, the

constraints guarantee that the response in the look direction will not be -

degraded.

The basic manner in which the Constrained LMS algorithm operates has been

discussed. For the purpose of clarity, the primary steps taken by the

algorithm will now be re-emphasized. Delays in the spatial correction filter

'p. -23-
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Figure 4.1 Signal-aligned Broadband Adaptive Array System ,
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are calculated to align the communication signal components on the sensors. A

desired response in the look direction is selected by assigning weight values

to the equivalent processor (the sum-on-column constraints are determined).

Once these tasks have been completed, adaptation begins and the processor

strives to minimize the total output power. The constraints guarantee that

there is no possibility of reducing power contributions made by the

communication signal. Mathematical derivations of the optimum constrained

weight solution and the Constrained LMS algorithm will now be presented.

W 4.3 Derivation of Optimum Constrained Weight Solution

The assumptions and definitions will be discussed first. Recall that the

signals at the sensor element outputs can be written as the combination of the

signal component and noise components

x(k) = s(k) + n(k)

It is assumed that both the signal and noises can be modeled as zero-mean

random processes with unknown second-order statistics. The covariance

matrices are defined as follows:

T
Ejx(k) x (k)} =RXX

Ejs(k) s (k) - RS

.. 4,

T
Ejn(k) n (k)j - RN

It is also assumed that the signal component is uncorrelated with the noise

components.

T ,
E{n(k) s (k)j 0

Finally, the expected value of the array output power is given by

e 2()- wT x = wT "

.0 Ejy (k)} E{ x(k) x (k) wi = X w (4.1) 11
,°i

w (.1

- -25-
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Recall that the adaptive weights in the equivalent processor dictated the

frequency response characteristic in the look direction. Define a J-

dimensional vector that guarantees the desired frequency response and L

represents the summed weight values of the j vertical columns as

f2

-S" f- (4.2)

L~ JM

The weights in the jth vertical column must sum to the selected number f

This constraint condition can be expressed as
'-S

Tc. w = f. j = , 2, 3, .--,N (4.3)

where c. is an NJ-dimensional vector consisting of all zeros and N ones given

by P

T 5E[000..0 .... 000..0 .... .l..1 .... 000..0 .... 000..0] (4.4)
N N N N N

p. A constraint matrix can then be defined that satisfies all j equations given

by (4.3) as

C . [cI  ... C ... Cj] (4.5) -,

The full set of constraints can then be written as

CT w -f (4.6)
U...

Although it seems like a complicated process, the constraint matrix C simply

guarantees that the sum of the weights in the vertical columns is equal to the

weights in the equivalent processor.

-26-
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The constrained optimization problem statement can now be formulated.

The array output power, wT Rxx w, must be minimized subject to the constraint

condition CT w = f.

The optimum weight vector is found by using LaGrange multipliers. A cost

function, similar in purpose to the MSE function of the LMS algorithm, is

formed by concatenating the constraint equation with a J-dimensional vector of

undetermined LaGrange multipliers X. This cost function is then minimized

with respect to the weights.

Cost(w) =i/2wT R w + X [CT w - f] (4.7)

(a factor of 1/2 is added to simplify the arithmetic)

Once again, notice that the cost function is a quadratic function of the
4 weights. It is known that the gradient of this function is zero at the

minimum point. The optimum weights are then found by finding the gradient of

the function and setting it equal to zero.

The gradient of the cost function is found by differentiating with

respect to the weights.

V Rxx w + C X (4.8)
COST

Setting this result equal to zero yields the optimal weight solution.

Rxx w + C = 0

II -1

S-Rxx C A (4.9)

The LaGrange multipliers are yet to be determined. They can be found by

realizing that the optimal weight solution must satisfy the constraint

condition.

T T I

C wO = f -- C[-Rxx C A]

[C Rxx C] f (4.10) i
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The optimum constrained weight vector can now be expressed as

-- R 1  [(CT  -x1  -I:

'a... sOPT C CTI f (4.11)

4.4 Derivation of Constrained LMS Algorithm

As in the LMS algorithm, this algorithm uses the Method of Steepest

Descent. Recall that this method states that the new weight vector is equal

to the previous weight vector plus a change proportional to the negative

gradient.

w(k + 1) = w(k) - j V
COST

In this case, the update equation can be expressed as

w(k + 1) = w(k) - p[Rxx w(k) + C X(k)] (4.12)

The initial weight vector, w(O), must satisfy the constraint condition.

It is chosen as

T -1

w(O) = C(C C) f (4.13)

The updated weight vector must satisfy the constraint condition as well. This ad'

can be written as

f = CT w(k + 1) =C T[w(k) - p(Rxx w(k) + C )(k))]

The LaGrange multipliers, X(k), are then given by a"'

A(k) -[CT C-IT C Rxx w(k) - [C TC][f C w(k)] (4.14)
'O, ~~~Ii- _ cll_ - _~ (.4

-.' and the iterative relation for the update equation is expressed as

T -IcT T1) -  CT
w(k+l) w(k) - - C(C C) C JRxx w(k) + C(C [f - w(k)]
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For the sake of convenience, two definitions are made. Define the NJ-

dimensional vector as

a = C(CT C)-  f (4.16)

and the NJ X NJ matrix P as %* -
P I- C(CT C)-ICT (4.17)

where I is the identity matrix.

The update equation can then be rewritten as

w(k + 1) = P[w(k) - wRxx w(k)] + _

The covariance matrix Rxx is unknown, however, so an approximation of Rxx at

the kth iteration, x(k) xT(k), is used. Recognizing the fact that xT(k)w(k) -

y(k), the final update equation becomes

w(k + 1) = P[w(k) - py(k) x(k)] + 6 (4.18)

4.5 Constrained LMS Simulation Model

The tapped delay line in the broadband processor enables the user to

select a desired frequency response in the look direction. This study is not

concerned with such filtering because narrowband signal models are being

used. For the purposes of this simulation, it is only necessary that the

response of the adaptive array in the look direction be equal to unity. This

response can be achieved in the broadband model by setting one weight in the

equivalent processor equal to one and the remaining weights equal to zero. V,

This is somewhat wasteful, however, as the same response can be obtained using L

the simplified model shown in Figure 4.2. The explanations and definitions

that have been presented are still valid, but the tapped-delay line in the e.,

broadband model now consist of a single tap (weight). The weight in the

equivalent processor is assigned a value of i < 0° so that the adaptive array

has an all-pass distortionless response in the look direction. The sum of the

-29- II
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weights in the single vertical column of the original processor are still

required to equal that of the equivalent processor.

4.5.1 TAKAO Implementation

The Constrained MS algorithm requires a spatial correction filter to- -

compensate for the misalignment of the sensor elements. A method proposed by

Takao et. al., [6] merges the misalignment compensation and the weight

computation into a single process. The direction of arrival of the

communication signal is used to generate a directional constraint to govern

the weights. This method has been used in this simulation. An additional

benefit of this implementation is that it helps to isolate the Constrained

LMS processor from the other array system components, which was desired from

the outset.

A description of the Takao implementation will now be presented. Note

the similarities between these and the original equations (5], as they are for

the most part equivalent.

f = I < 0O (only one weight in equivalent processor)

(c*)T w - f constraint equation

= (wl + jw2, w3 + jw4  W2N - i + JW2N)

T 1 J2 N
c = (e , e , "', e )

where 2i the phase of the desired signal at sensor element i

P I - (c c)IN"

= c/N

w(k + i) = P [w(k) - j y(k) x (k)] + a update equation

%.%%
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4.6 Constrained LMS Software Modules

The weights are initialized using the WEIGHTINIT routine. They are

assigned a value of
f -ft 

" '

wi(O) = steering delay i/number of elements

The WEIGHTINIT subroutine is also responsible for calculating the individual

4 steering delays that compensate for misalignment. These are given as

steering delay i = exp(-j2 i )

where Qi is the phase of the desired signal at element i.

Several quantities are calculated from directional information the first

time the weight update routine CONLMS is called. These include

P = I - (c c)/N

c./N

w# J~l jQ2 JQN "
= [e , e , ., e

-. . Each time the routine is called, a new weight is calculated using

w(k + 1) = P [w(k) - py(k) x *(k)] + g

These updated weights are then passed to the pattern-forming network.

The FORTRAN source code listings are given in Appendix C. Figure 4.3

depicts the modules discussed and illustrates the primary input and output

parameters. The variable names used in the program are shown in parenthesis.

S. The Constrained LMS algorithm also has some limitations. Although it

does not require a reference signal, it does require prior information

£ pertaining to the communication signal. It is vulnerable to steering error.

Steering error arises if the supposedly known angle of arrival of the

-32-

%t-t' . .t. .t. .ft -'t ft .. . .
oAS

ft. 7 ' t . f t ft f t f f t f t



(XY)Wrqwwrrw.,. W
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'type of algorithm WEIGHT INITIALIZATION
i!' ~ ~~(ALGTYP) "~, -

element location SUBROUTINE initial weights (COMPWTr) ''

(X,Y) WEIGHTINIT -
~arrival angle of

communication

signal F-
(PHI, THETA)

weights
4. (COMPWT)-

b-4,

array output CONSTRAINED UL4S
(ARYOUT ) ALGORITHM

sensor outputs SUBROUTINE updated weights (COMPWT)
(OUTPUT) CONLMS

array output
(STRDEL)

'S4

Figure 4.3 Constrained LMS Software Modules .4
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information signal changes appreciably. In that event, the algorithm treats

4. the signal as it would any other non-look direction signal - by placing a

deep null in its direction of arrival. The algorithm would have no way of

knowing that the "interference" it is trying to ignore carries desired

information. Secondly, its convergence rate is comparable to that of the LMS

algorithm. An algorithm that possesses a faster response will now be

examined.
k
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5.0 UPDATE COVARIANCE ALGORITHM

Both the LMS and Constrained LMS algorithms circumvent computational

problems associated with the direct calculation of a set of weights by using

effective estimates. The simpler calculations that result allow them to

frequently update the weights in order to compensate for the time-varying

environment. Recursive processors such as the Update Covariance algorithm

presented by Monzingo and Miller [7] can also be used to avoid these

computational difficulties. These algorithms recursively perform matrix

inversion so that direct matrix inversion is never required. Although they

also avoid direct matrix inversion, recursive processors represent a

significant departure from the algorithms previously discussed.

J Recall that the optimum weight solution given by Weiner-Hopf can be

*expressed as

-HOPT = RXX-I P
.21.

The Update Covariance algorithm and other recursive processors recursively

estimate the sample covariance matrix rather than rely on gradient methods

that asymptotically approach an optimal solution. These algorithms calculate

the optimal set of weights at each sampling instant based on a least-squares

fit to the received data.

5.1 Motivation for Selection

The primary reason for the selection of the Update Covariance algorithm

is its speed of convergence. This characteristic, which is common among

6 recursive processors, allows the algorithm to respond to changes more rapidly

than other methods of adaptation. It is simply a more direct approach to the

problem of computing an optimal weight solution. Updating the complex weights

does not involve descending along a performance or cost surface at a limited

* rate.

Another beneficial quality of the Update Covariance algorithm is that no

reference signal is required for adaptation. Once again, this eliminates the

need for complicated reference generation techniques. It does, however,
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require initial directional information pertaining to the communication

signal.

Finally, recursive processors hold good promise for the future. They

require a digital implementation and this has been, and still is, their

primary disadvantage. The great technolog.cal strides made in the production

of very fast, inexpensive, and compact digital hardware, however, have

resulted in the consideration of recursive processors for applications that

I were previously out of the question. The improved convergence rates (measured

in terms of iterations) offered by recursive processors have been documented

[8] and, if technological trends continue, it may become implementationally

feasible to exploit this advantage.

*" 5.2 Update Covariance Algorithm Description

As mentioned, the Update Covariance processor estimates the sample

covariance matrix in order to calculate an optimal weight solution. Unlike

the other algorithms described, the operation of this algorithm can be

described as a series of complex computations solely intended to calculate the

optimal weight solution.

As the name implies, the Update Covariance algorithm uses the sample

covariance estimate, R, to summarize the effect of de-emphasizing the past %

data. The new sample covariance matrix estimate is given by

*T
Rxx(k+l) -a Rxx(k) + x (k+l) x (k+ ) (5.1)

-. .

4 The new estimate is equal to the new computed value x (k+l) xT(k+l) plus the

past estimate scaled by a factor of a. a is a number between 0 and I that is

used to determine the significance of past data. The inverse estimate then

becomes

R-1~+I 1 1Rxk + T( I:

-- (k+l) -- [R(k) +- x (k+l) x(k+l) - I  (5.2)

Note that calculating the inverse in this manner however, would require matrix

inversion, which is exactly what the algorithm is trying to avoid. Therefore

it is useful to invoke the following matrix identity
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[p-i + M * -1M] - I  P- P11* T [MPM * r +"]' P(53

This identity is applied to equation 5.2 to obtain R (k+l) in the form
- 1

RXl (k) x (k+l) x (k+l) (k)

_ X  (k+l) [R_- (k) - T-(5.4)
a + x (k+l) (k) x (k+l)

The optimum weight solution can then be found by utilizing the Weiner-Hopf

equation

HoPr -' RXX- P

Multiplying both sides of equation 5.4 by the vector p yields the Update

Covariance weight update equation.

- X-I(k * xTkl)

R (k) x (k+l) x (k+l) w(k)
w(k+l) - [w(k) - xTk - * (5.5)

, a +_ (k+l) Rxx x (k+l)

The Update Covariance algorithm consists of the following two steps: r

1. The inverse sample covariance estimate is formed using equation 5.4.

2. The weight solution is calculated using equation 5.5.

Due to the fact that the Update Covariance algorithm can be thought of as an

entirely mathematical process, the simulation model will be dispensed with.

The software associated with this algorithm simply performs the computations

outlined in equations 5.4 and 5.5. L
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5.3 Update Covariance Software Modules

The weights are initialized using the WEIGHTINIT subroutine. These

weights contain directional information which initially steers the antenna in .-

the direction of the desired signal.

The first time the weight update routine UPDCOVAR is called, the inverse

sample covariance estimate initialized to the identity matrix. After the

first call, a new sample covariance estimate is formed by performing the

. necessary computations. This result is then used to calculate the new weight

vector which is then passed to the pattern-forming network.

The FORTRAN source code is given in Appendix C. Figure 5.1 depicts the

modules that have been discussed and illustrates the primary input and output

,U parameters. The variable names used in the routines are shown in parenthesis. -

By examining the update equations, it becomes quite evident that the

% Update Covariance algorithm, or any recursive processor for that matter, is

computationally intensive. Although recursive estimation produces significant

- "processing savings when compared to direct matrix inversion, it still

represents somewhat of a quantum leap in terms of complexity when compared to

the other algorithms presented.

Recall that the LMS algorithm required on the order of 2N computations to -

update the weights, where N is the number of sensor elements. The Update

Covariance processor requires on the order of 5N2 computations to update the -.

weights. Therefore, although the recursive processors require fewer .U

iterations to converge, it may take a great deal of time to complete each

iteration. For applications large in size (those having many elements),

recursive processing may offer no improvement in actual convergence time over -

the gradient-based algorithms.

-38-

'A. .. * ..

%•%%

%,'

~~~~~~~~~~~~. .-. .. ..... •-- - ,",4 , , ,... . ... .. . •............... . - ...

•,.,' " " % %" • " " ' " .... ,. " "" " "• "- -- "" "-.
•

-" i,' . • . " ,- " - "



type of algorithm
(ALGTYP) WEIGHT INITIALIZATION

element location
(X,Y) SUBROUTINE initial weights (COMPWT) r

WEIGHTINIT
arrival angle of
communication

ft signal

(PHI, THETA)

weights UPDATE COVARIANCE
(COMPWT) AL.GORITHM

sensr ouputsupdated weights (COMPWT)

(OUTPUT) SUBOUIN
UP DCOVAE

Figure 5.1 Update Covariance Software Modules
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6.0 DESCRIPTION OF THE HF ADAPTIVE ARRAY SIMULATION MODEL

The purpose of this section is to explain the computer simulation program

that has been developed to study adapti'v2 algorithms for HF antenna arrays.

All parameters that the user must specify will be discussed first. These

parameters define the signal/interference environment as well as the array

system to be tested. Secondly, the method used to evaluate the performance of

the algorithms will be examined. Finally, the simulation software including

signal models and the operation of the program will be presented.

4.

6.1 User-Definition of Array System and Environment

Before an adaptive array system can be evaluated, the user must define

the array system and environment to be studied. The parameters that must be

specified can be divided into the following classes:

I. Signal characteristics and environment

2. Interference environment

3. Array system

4. HF channel characteristics

5. Convergence characteristics

A complete listing of the user-specified parameters is given in Figure 6.1.V-•..•

v. Appendix B contains the user manual for the simulation, giving complete

descriptions of the above parameters, as well as the actual user interface.

.4. In addition to a description of the input process, the manual also defines

user options for viewing the simulation output.

6.2 Performance Evaluation

The performance of the adaptive algorithms will be evaluated using a

maximum signal-to-noise criterion. This criterion will now be examined.

O:, Recall that the output of the array can be expressed as

y(t) = wT x(t)
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2*'4

UNITS

ARRAY SYSTEM

Number of sensor elements ---

Length of antennas meters

Location of elements in rectangualr coordinators meters

Adaptive algorithm ---

SIGNAL CHARACTERISTICS

Arrival angles, azimuth and elevation degrees

Number of Samples/bit ---

INTERFERRENCE CHARACTERISTICS

Number of Jamming signals

Arrival angles, azimuth and elevation degrees

J/S ratio dB

S/N (thermal) ratio dB

HF CHANNEL CHARACTERISTICS

Number of signal paths --

Delay of each path msecs 4..
Attenuation of paths dB

CONVERGENCE CHARACTERISTICS

Number of Convergences --- ,

SNR tolerance dB

Figure 6.1 User-entered parameters

4,'.

,2.1
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where x(t) contains both signal and noise components.

The array output can then be divided into signal and noise components.

Ys(t) = wTs(t) Yn(t) - WT n(t)

The expected signal and noise power at the array output is given as

i- ,T ,T-

Efly m)1I = T siT =w R w

2 *T T *T
E{lyn(t)I 2 } = w i = w in n ] w = w R w (6.1)

Therefore, the signal-to-noise (noise + interference) ratio can be calculated

as

w R w
.-"SNR T (6.2)

-- -nn

The optimum SNR can be computed using a matrix transformation as given by

Monzingo and Miller [7]. The optimum SNR is given as

T -1*
SNROPT =s R -s (6.3)OPT -

As the name implies, the maximum achievable SNR is used to evaluate algorithm

performance. The goal (optimum SNR) is known, and by computing the current

SNR, it is possible to observe the degree of success that the algorithm is

* having in attaining this goal. The model is executed until it has reached a

user set SNR goal.

This study is primarily interested in finding the average number of times

that a particular algorithm must update the weights (iterations) before it has

.converged as function of the HF channel. It is useful to first consider a

three-path HF channel model as depicted by Figure 6.2. The HF channel is

characterized by the delays between the paths and the attenuation of each path

(determined by the variances of the random complex numbers, gi(t)). By

selecting a set of delays and attenuations, an HF channel model is defined.
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. Notice, however, that it is possible to get different channel "realizations"

using the same characteristic channel model (same delays and variances) by

simply using different random numbers. This plays an important role in the

performance evaluation.

Due to the fact that the HF channel is slowly varying, a single channel

realization is selected for each adaptation. The optimum SNR, which is

channel dependent, is then calculated and adaptation begins. The current SNR

is periodically calculated and if this value is not sufficiently close to the

optimum value (proximity to optimum entered by user and known as SNR

tolerance), the adaptation process is continued. When the SNR does approach

the optimum SNR, the algorithm is said to be "converged" and the number of

required iterations is recorded. A new HF channel realization (a new set of
- random numbers for the tap weights) is then selected. The entire process is

* repeated until the algorithm has converged the specified number of times

(user-entered). At that time, the average number of iterations is

calculated.

By performing this simulation for each of the selected algorithms, it

will be possible to determine, on the average, which algorithm converges in

the fewest number of iterations in an HF environment.

6.3 Simulation Software Description

The purpose of this section is to explain the signal models and the

operation of the simulation program used in the study.

6.3.1 Desired Signal Model

The signal that is to be received is assumed to be a BPSK waveform at a

carrier frequency f " This can be written in complex form as

n s(t) = A(t) /- exp (jwct)
. .

where
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Ps desired signal power and

A(t) = +1, -L

The signal component at element i can be written as

si(t) = A(t) F--P-s exp(jwct) exp(j~i) (6.4) '.

~F':

where Qi is the phase of the desired signal at element i.

Q is calculated using the arrival angle information and the location of

the elements.

= 2*Tr*f c * xrot(i)*sinO/c (6.5)

where

xrot(i) y(i)sin + x(i)cos

x(i),y(i) - rectangular coordinates of element i

* - azimuthal arrival angle of desired signal

G - elevation arrival angle of desired signal

c - speed of light

Using complex envelope representation, the carrier component can be

dropped from the notation. The jammer power and thermal noise power are r
defined as ratios relative to the signal power, Ps. For the sake of

simplicity, the signal power is assigned a value of I. %

Equation 6.4 can be written for discrete sampling as

Si  A(k) V - exp (jQ ) ""

The signal vector then becomes -
ej~l

e

s(k) = A(k) /.P

e JQ
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6.3.2 Interference Model

The jamming signals in this study have been modeled as complex Gaussian

noises. This can be expressed as

nj(t) v P3772 [E(t) + j F(t)] (6.6)

where E(t) and F(t) are zero-mean random processes with a gaussian

distribution and a variance of 1. The power of the jammer is calculated from

.- the user-specified jammer-to-signal ratio.

The jamming signal component at each element is defined as

nii(t) = nj(t) exp(j2i) (6.7)

where is the phase of the jamming signal at element i. It is calculated in

r the same manner previously discussed using directional and element location

information.

6.3.3 Thermal Noise Model

In this study, thermal noise has been modeled by adding complex Gaussian

Noise to each element. This can be expressed as

n (t) - /f77 (E(t) + j F(t)] (6.8)
t n

where E(t) and F(t) are zero-mean processes with a Gaussian distribution and

variance of I.

The power, Pn, is calculated from the user-specified signal-to-noise

ratio.

6.3.4 Correlation Matrices

In order to evaluate the performance using a maximum signal-to-noise

criterion, it is necessary to compute correlation matrices. These will now be

defined.

Recall that the desired signal can be expressed as
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S (k) - A(k) V-7 exp(Ji)

The correlation matrix can then be written as

jo-j(Q t 1 Q2 )  -J(Ql Q N)

e e e

e '2 1 -joe 2 N

'R =P *(6.9)

-J(Q2- I -J N -JO j
' e e • 0e

The noise correlation matrix can be written as the sum of the individual noise

mat rices.

'LRn RJamer RNHRIA (6.10)

where

e-j e 1  N

e 2 1 e-j e 2 N (-1

" -4

RJ = P (6.9) '.

e e1) eJO

an NTHERA a2 (6.12)

As previously mentioned, the optimum SUR is given by

.4

4'SNR -sR s
opt a -n

The current SNR can be written ash ono
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., w*TR w

SNR = *

w R w

The optimal value is calculated first. The simulation is started and

adaptation begins. The SNR is periodically checked, and when it is

sufficiently close to the optimum value the simulation is stopped.

6.3.5 Simulation Program Operation

The flow chart of Figure 6.3 depicts the order in which the described

operations are performed. The following is a brief discussion of how the

program operates.

The simulation begins with the user specifying the defining parameters

such as the element locations, selected algorithm, arrival angles, and

relative signal strengths, among others. The program must then calculate the

optimum SNR for a particular channel realization. This value will be used to

determine when the algorithm has converged. The antenna weights are then

initialized and the adaptation process begins.

The desired signal and jamming signals are determined first using the

models described. These signals are then passed to the HF channel model.

These "channelized" signals are then passed to the antenna routine which

calculates the contributions of all signals at each antenna element. The

output of each sensor element is multiplied by its corresponding weight, and

these products are summed to form an overall array system output. This

overall output and the output of each element is then passed to the selected

algorithm. The algorithm uses this information to adjust the weights.

The weights are updated by the selected algorithm and the current SNR is r

periodically computed. If this SNR is not close to the optimum value,

adaptation continues. If it is, however, the converged weights and the number

of convergence iterations are stored in a file. A new channel realization is

selected, the parameters are re-initialized, and the process is repeated.

When the algorithm has converged a sufficient number of times (user-

specified), overall statistics are gathered and the simulation is complete.
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USER PARA METER SPECIFICATION

I CALCULATE OPTIMUM SNR
PARAMETERSF%

Rss/Ps, Ran, Ptn'Sr

CALCULATE OPTIMUM SNR
IPs, sTRnn s*

INITIALIZE WEIGHTS

GENERATE SIGNALS AND
PASTHROUGH CHANNEL

INCREMENT
UPDATE WEIGHTS SOUVRGENCE

SYES

STORE WEIGHTS
AND NO. OF ITERATIONS

ONVERGED ENOUGH TIME NO COUNT = o GET E
NEW~CHANNEL

YES

Figure 6.3 Flow-diagram of Program Operation
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-. 7.0 SIMULATION RESULTS AND CONCLUSIONS

The purpose of this section is to illustrate the results that have been

obtained using the simulation model described in the previous section. From
these results, conclusions concerning the applicability of the particular

algorithm to the problem of interest can be drawn.

In all of the tests to be conducted, certain parameters will remain

-.. constant. These include arrival angles and signal powers and are summarized

in Figure 7.1. For each test, the average number of required convergence

iterations will be given to demonstrate how quickly the algorithms approach

optimality in the maximum-SNR sense. Also, polar plots will be presented in

order to pictorially demonstrate the nulling capabilities of the algorithms.
.~..1

These plots consist of two "slices" of each antenna pattern at the azimuth and

elevation angles for each incoming signal (see Figures 7.2 a .d 7.3 for a

definition of the geometry).

-

0%

r.- .

° L'T .i ,..

0€ .W

%-



S: 3NAL A Z U TH AL ANCLE ELEVATION ANGLE POWER

90. 0I0 00

90. 0 E60.0 20 d2

J MI 2 150. 0 75.0 20 da~I

Sjh~ra1 -10 d-, Carrier freQuency '130 A7ThZ

S=E"NS-C." £EEMENT LOCATICNS

Y-A: Is

(0. 10) (5,.10) (10. 10)

V NV V

(015) (5,5) (1015)

(0.0) (5,0) (10.0)
X-AXIS

MIN

Fi ur 7. Co s a t T st P r t r

-51-



Z-r %

5- 5

%

'.

..- 
..

y-

,.. 

"

~Figure 7.2 Description of Elevation Plots

"5,

-52-l



... 
......

'

1 
7ot't 

t

-5 
3-

,--

r' .

?I



7.1 Test 1: Negligible Channel Effects

It may be enlightening to first consider the performance of the algorithm

in an unperturbed channel environment. In this way, the degrading effects of

the HF channel can be monitored as well. Although it is not a terribly

realistic case, it may become so if some efficient channel compensation

technique could be employed. Recall that in this study the array model

consists of one weight per element. This allows for beam steering, but the

array cannot compensate for the smearing effects of the channel.

This case, although utilizing an ideal channel, is far from a trivial

one. In fact, simulation studies frequently limit themselves to an ideal

channel, because the task of nulling out strong jamming signals is a difficult

one even in this setting.

The results for all algorithms were averaged over 100 convergences. The

number of iterations for each convergence was recorded to produce the

histograms of Figures 7.4 through 7.6. In all cases, the SNR tolerance (the

proximity to the optimum SNR that determined covergence) was set to I dB. In

other words, the algorithms "converged" when the SNR was within i dB of the

optimum value. The results are tabulated in Table 7.1. The polar antenna

plots that follow verify that all of the algorithms did an excellent job in

placing nulls in the directions of the interferences.

Probably the most striking result obtained was the incredibly few

iterations required by the Update Covariance algorithm to converge. This

result can be misleading, however, due to the number of computations it

requires per iteration. Recall that the update covariance algorithm requires

about 5N complex computations for each iteration, where N is the number of

antenna elements. The LMS and Constrained LMS algorithms require on the order
of 2N and 5N2 computations per iteration respectively. Therefore the

difference in the actual number of required computations is not that great.

The Constrained LMS algorithm converged the slowest of the three

algorithms. It is interesting to note that the weight changes of the LMS

algorithm approach zero as the weights approach their optimal value. This can

be seen from the LMS weight update equation listed below as

-54-

04,

* .,,..-.."..----'...-1-



I~ TEM. I OHS

-55-

4.3L -A



U 4

left ~ ~~~ Re -- 0 SO

.4

-- 56

.. . .

lie ih,..

- -5 -

4. OU .-



"'A"

1.

U 40A

E S.

4i i )

A otoIOa 6

.7 UTIO

Fiue76 CnegneHsormo paeCvrac loih

inIel hne

-57



0p

*Table 7.1 TEST1 Summary

Adaptive Number of Average Number Standard
-- Algorithm Convergences of Iterations Deviation

LMS 100 318.0 103.5

Conistr. LMS 100 536.5 8.14

Update Coy. 100 9.9 6.7
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,. +

= :'(k) + j e(k) X* (k)

As the error decreases, so does the amount that the weights can change.

The weight changes of the Constrained LMS algorithm however, will never

approach zero because the beam is constrained. Signal power will always

appear at the output, even if contributions of interferences are negligible.

Therefore, the weights will always change an appreciable amount, provided that

the signal is present

'.(k+l) = Factor*[W(k) - .iy(k) X*(k)]

It therefore seems reasonable that the Constrained LMS algorithm will perform

better when the signal power is low or when it is absent altogether. This

illustrates an important advantage possessed by the Constrained LMS

4 algorithm. Unlike the others, the Constrained LMS algorithm could optimally

adjust the weights before actual signal transmission (including preamble)

begins. This is the major focus of TEST 4.
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SUMMARY OF PLOTS FOR TEST1

Figure Tl.l: Unadapted antenna plot at p = 90', 6 = 800

- Purp3se: To indicate initial gain in direction of Jammer I

Figure T1.2: LMS-adapted antenna plot at p = 900, e = 80-

Figure TI.3: Constrained LMS-adapted antenna plot at = 900, 6 = 800

Figure T1.4: Update Covariance-adapted antenna plot at = 900, 6 = 800

Purpose: To demonstrate nulling of Jammer I by each algorithm

Figure T1.5: Unadapted antenna plot at = 1500, e = 750

-7 Purpose: To indicate initial gain in direction of Jammer 2

Figure TI.6: 1UIS-adapted antenna plot at 1500, e - 750

Figure T1.7: Constrained LMS-adapted antenna plot at = 150', 8 = 750

Figure T1.8: Update Covariance-adapted antenna plot at = 1500, a = 750

Purpose: To demonstrate nulling of Jammer 2 by each algorithm
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Figure T1.2 LMS-Adapted Pattern in Direction of Jammner1

(Figure A)
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Figure T1.3 Constrained LMS-Adapted Pattern
in Direction of Jammer 1

(Figure A)
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Figure TI.3 Constrained LIS-Adapted Pattern-Sin Direction of Jammer I

(Figure B)
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in Direction of Jammer 1
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7.2 Test 2: HF Channel With Moderate Delay Characteristics and Poor

Attenuation Characteristics

The second test represents a significant departure from an ideal

channel. The channel consists of three paths separated by 0.83333 msecs.

Each of the paths is given equal weighting. In other words, signal components

will not be attenuated more in one path than in another.

Once again, results for all algorithms were averaged over 100 -P-.

convergences. Histograms depicting when the algorithms converged were

generated and given as Figures 7.7 - 7.9. The results are tabulated in Table -

7.2, and as the plots will verify, all algorithms did an effective job in

nulling out the jammers.

The number of iterations required by the Update Covariance algorithm was *

very small. In this case, however, it is interesting to note the difference r

in actual computations of this algorithm and the LMS algorithm (9,846 for LMS,

10,651 for Update Covariance). If the computations all required the same

- amount of time to complete, the actual "convergence time" for the LMS would be

shorter. This is why it is important to take the computational complexity of

each iteration for the algorithms into account.

Once again, the Constrained LMS algorithm was the slowest in average

convergence. The results also indicate that the algorithm had a wide

fluctuation in the required number of iterations. As can be seen from Figure

7.7, the Constrained LMS algorithm had difficulty in attaining the "1 dB" r
threshold once the SNR had approached the optimal value. This problem can NN

quite possibly be attributed to the weight update problem previously

discussed. Even after contributions of interferences were reduced from the

array output, the weights will change an appreciable amount due to the signal

power (which now may be magnified by the existence of three paths). Once

again, this will be studied further in TEST4. -,.

As expected, the LMS algorithm also had more difficulty approaching an

optimal value in this test than in the previous one. It should also be noted

that in the event that the preamble was severely distorted by a channel,

covergence of any kind would be severely hampered. In other words, if the

received signal did not look much at all like the reference signal, the I
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algorithm would have an extremely difficult task. After all, algorithms

*, requiring references operate by forcing the array output to be equal to the

. reference signal. If this is attained, it is assumed that contributions of

iammers are negligible. Consider the case, however, when the received signal

does not strongly resemble the reference signal. Even if the weights were

optimally adjusted, the output of the array would not look like the reference

. signal, and the algorithm would continue to adjust the weights in an attempt

to force the output to be equal to the reference signal. In effect, it would

be trying to compensate for the channel effects, although it has no true means

-i t doing so. This is an inherent problem with algorithms that require

references and is worth mentioning. It is also worth mentioning that the L4S

algorithm had no problem converging in this case, and the channel produced

some fairly bad smearing effects. Therefore, it can be assumed that the

:.hannel must get significantly worse than this to prevent convergence.
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SUMHARY OF PLOTS FOR TEST2

Figure T2.1: Unadapted antenna plot at ¢ = 90', e = 800

Purpose: To indicate initial gain in direction of Jammer I

Figure T2.2: LMS-adapted antenna plot at ¢ = 90, 9 = 800

" Figure T2.3: Constrained LMS-adapted antenna plot at = 90 °, 9 = 80"

Figure T2.4: Update Covariance-adapted antenna plot at ¢ = 900, 9 800

Purpose: To demonstrate nulling of Jammer 1 by each algorithm

Figure T2.5: Unadapted antenna plot at 0 150, 8 = 750

Purpose: To indicate initial gain in direction of Jammer 2

Figure T2.6: LMS-adapted antenna plot at € 1500, e 750

Figure T2.7: Constrained LIS-adapted antenna plot at O = 1500, 0 = 750

* Figure T2.8: Update Covariance-adapted antenna plot at q = 1500, 8 = 750 W,

Purpose: To demonstrate nulling of Jammer 2 by each algorithm

0 1*
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(Figure A)
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(Figure B)
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(Figure A)
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(Figure A)
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7.3 TEST3: HF Channel with Poor Delay Characteristics and Poor Attenuation

Characteristics

This test differs from TEST2 in that the delay between signals arriving

from different paths is now doubled to 1.6666 msecs. ;.

Once again, results for all algorithms were averaged over 100

convergences. The convergences were monitored and histograms were generated

which indicate the nature of when the algorithms converged. The SNR tolerance

was set to I dB for all trials. All of the algorithms placed deep nulls in

the directions of the jamming signals, as the plots that follow will verify.

The results are shown in Table 7.3.

The Update Covariance algorithm again required the fewest number of

iterations by a wide margin. It is also important to note that the LMS

*1 algorithm actually required fewer computations on the average to converge.

Therefore, in real time, the LMS algorithm converged faster, making the

assumption that all computations take the same amount of time.

The Constrained LMS algorithm was the "loser" again. But the average

number of convergence iterations did not change significantly from TEST2.

This seems to indicate that the covergence difficulties are more related to

the magnification of the signal (existence of three paths) than the delay

between the paths.

The results indicate that the delay between the paths did not seriously

affect the performance of the LMS algorithm. Again, this fact suggests that

the existence of three distinct paths plays a more significant role in

affecting algorithm performance. The LMS algorithm still converged in a

modest number of iterations on the average.
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TABLE 7.3 TEST3 SUMMARY

ADAPTIVE NUR4BFR OF AVERAGE NUMBER STANDARD
ALGORITHM CONVERGEDICES OF ITERATIONS DEVIATION

LMS 100 542.5 172.6

CONSTR. LMS 100 1143.5 542.6

UPDATE COV. 100 28.8 43.1
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SUMMARY OF PLOTS FOR TEST3 -

Figure T3.1: Unadapted antenna plot at 4 =900, 9 - 80*

Purpose: To indicate initial gain in direction of Jammer 1

F'gure T3.2: LMS-adapted antenna plot at 4) 900, 0 = 800
Figure T3.3: Constrained LMS-adapted antenna plot at 4 = 90, 9 - 800

Figure T3.4: Update Covariance-adapted antenna plot at = 900, 0 = 800

, Purpose: To demonstrate nulling of Jammer I by each algorithm

Figure T3.5: Unadapted antenna plot at 4 1500, 0 - 750

Purpose: To indicate initial gain in direction of Jammer 2

Figure T3.6: LMS-adapted antenna plot at = 150, 0 = 750

Figure T3.7: Constrained LMS-adapted antenna plot at - 150, - 750

Figure T3.8: Update Covariance-adapted antenna plot at 4 1500, - 750

Purpose: To demonstrate nulling of Jammer 2 by each algorithm
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Figure T3.1 Unadapted Antenna Pattern in Direction of Jammer 1
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7.4 TEST4: Dependence of Convergence of Constrained LMS Algorithm on the

Presence of the Signal

It has been mentioned that the Constrained LMS algorithm will perform

better when the signal is absent than when it is present. In other words, if

the Constrained LMS algorithm was to be selected, sending a preamble would not

only be wasteful, it would be detrimental. Tests 1, 2 and 3 will now be

repeated for the Constrained 1MS with the "desired" signal (preamble) being

absent.

.. %

In order to perform this test, the simulation had to be effectively

"fooled." If the signal power is zero, the SNR is undefined. Therefore, the

optimum values will be calculated as if the signal was present (signal power =

I). In other words, the Constrained LMS algorithm will have to attain the

same value of SNR as it did before.

The results are tabulated in Table 7.4. The polar antenna plots that

follow verify that the Constrained LMS algorithm places deep nulls in the

directions of the jammers without the benefit of any preamble whatsoever. The

number of average iterations required also validates the assumption that the

algorithm will perform better in the absence of the signal.

Notice that the average number of required iterations is now virtually

V identical to that of the LMS algorithm. Also recall that the Constrained LMS

algorithm (with the signal present) suffered large fluctuations in required

iterations for channels 2 and 3. When the signal is absent, however, the

algorithm actually had the smallest percentage deviation of all the algorithms

. tested. This is graphically illustrated by the histograms of Figures 7.13 -

7.15. This fact only strengthens the claim that the existence of the three

paths (and the signal magnification that results) is the primary culprit of

the convergence problems suffered by the Constrained LMS algorithm. When this

effect was nullified by eliminating the signal, convergence was fairly rapid

and quite consistent.
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Table 7.4 TEST4 SUMMARY .-

NUMBER OF AVERAGE NUMBER STANDARD

CHANNEL CONVERGENCES OF ITERATIONS DEVIATION

IiIDEAL 100 337.0 81.1

CHANNEL 2 100 593.0 88.1

CHANNEL 3 100 598.5 105.7
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7.5 TEST5: Dependence of Adapted Antenna Pattern on Number of Required P

Iterations

The histograms that have been presented graphically demonstrate that

quite often there is a considerable difference in the number of required

iterations for an algorithm to converge. The question may arise whether or -

not the adapted antenna patterns produced by widely separated convergences are

significantly different.

The polar antenna plots that follow were generated using the fastest and

slowest convergences of the LMS algorithm of TEST2. It can be seen the

antenna plots are virtually indistinguishable. This indicates that there is

not a marked difference in the final adapted antenna patterns produced by the

widely separated convergences. This is certainly not a surprising result, as

the performance measure that has been utilized requires that the pattern be

close to optimal before the algorithm is said to be converged.
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TEST SULMARY

For convenience, the results from Tests 1-4 are re-tabulated as shown in

Table 7.5. Also, Figures 7.16 - 7.19 track the performances of each algorithm

for identical convergences in each of the three channels tested.
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Table 7.5 Comparison of Convergence Properties for the

Adaptive Algorithms
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7.6 Testb: Investigation of an Alternate Antenna Geometry

In an effort to understand the algorithm performance which results from a

change in the antenna geometry, Tests 2 and 3 were repeated for the geometry

shown in Figure 7.20. All other parameters from the tests were held fixed so

that any differences may be directly attributed to the new geometry.

This rhomboid pattern was chosen somewhat at random, and is not in any

way special. It was chosen simply to provide the simulation with a geometry

different from the rectangular array used elsewhere.

, The antenna plots for this case do show a difference in shape as compared

to those for the rectangular geometry. This is simply due to the change in

* the antenna array factor caused by the alternate geometry. Notice, however,

" that the general trend of the patterns is the same for both geometries. We

see only slight variations in the patterns as functions of both the

controlling algorithm and the channel characteristics.

m'..
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SUMMARY OF PLOTS FOR TEST6 - RHOMBOID GEOMETRY

Figure T6.1: Unadapted antenna plot at = 900, e = 80°

Purpose: To indicate initial gain in direction of Jammer I

Figure T6.2: LMS-adapted antenna plot at =90% 9 80"

Figure T6.3: Constrained LMS-adapted antenna plot at = 90° , 9 -80' N

Figure T6.4: Update Covariance-adapted antenna plot at = 900, 0 = 800

Purpose: To demonstrate nulling of Jammer I (in Channel 2) by each

algorithm with new antenna geometry

Figure T6.5: L.MS-adapted antenna plot at d = 900, = 80'

Figure T6.6: Constrained LMS-adapted antenna plot at = 900 , = 800

Figure T6.7: Update Covariance-adapted antenna plot at = 900, - 800

* Purpose: To demonstrate nulling of Jammer I (in Channel 3) by each

algorithm with new antenna geometry

Figure T6.3: Unadapted antenna plot at = 1500, e = 750

Purpose: To indicate initial gain in direction of Jammer 2

Figure T6.9: LMS-adapted antenna plot at = 1500, 9 = 750

Figure T6.10: Constrained LMS-adapted antenna plot at , - 1500, = 750 ..

Figure T6.11: Update Covariance-adapted antenna plot at t = 1500, 9 = 750

Purpose: To demonstrate nulling of Jammer 2 (in Channel 2) by each

.' algorithm with new antenna geometry

[O Figure T6.12: LMS-adapted antenna plot at = 1500, 9 = 750

Figure T6.13: Constrained LMS-adapted antenna plot at , 1500, a = 750

-. '..'. Figure T6.14: Update Covariance-adapted antenna plot at t = 1500, 9 = 750
-U.

Purpose: To demonstrate nulling of Jammer 2 (in Channel 3) by each

algorithm with new antenna geometry
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7.7 Conclusions and Recommendations

In all of the tests that were conducted, the Update Covariance algorithm

consistently outperformed the others in terms of required iterations for

convergence. It has also been shown that this can be an extremely misleading

quantity, as the algorithm may require more actual computations to converge.

Therefore, although the Update Covariance algorithm will converge in fewer

iterations, it will undoubtedly require significantly more time to complete

. each iteration. As an example, assume that it was desired to build an array

. consisting of 36 elements, and that the algorithm must converge on a preamble

100 msecs. in duration. The Update Covariance algorithm would then require N
3

+ 3N2 + 3N or approximately 50652 complex computations for each iteration. If

the algorithm needs 100 iterations to converge, a grand total of 5065200

complex computations must be completed in 100 msecs. This allows

approximately 19.74 nanoseconds to perform a complex computation. So despite

the comparatively few iterations required, implementing the Update Covariance

algorithm may place rigorous, if not unreasonable demands on the hardware.

Even if this can be attained, it seems unreasonable to implement such a system

when other algorithms can offer similar convergence times with much less

complicated hardware. It was shown that the LMS algorithm could converge with

fewer computations. And unlike the Update Covariance algorithm (which

involves matrix arithmetic), the computations of the LMS algorithm can be

performed simultaneously. In other words, the required 2N computations can be

performed N at a time as the update of one weight is independent of the update

of another. The required time for each iteration is therefore equal to the

*5, time it takes to perform 2 complex computations. This means that the actual

realtime convergence for 2.MS algorithm is much less than that of the Update

* Covariance algorithm in all cases that have been presented.

The LMS algorithm is not without its drawbacks, however, as has been
V" mentioned. Probably the most notable is the reference requirement that has

been discussed. The channel model in this simulation posed not prohibitive
O,57

difficulties for the algorithm and, if it is a good representation of what

-. goes on in the HF channel as it is believed, the reference requirement should

not be a major obstacle. The reference signal generation will, however,

require precise synchronization between the arrival of the transmitted M

preamble and the preamble used as the reference. This may be a difficult
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task. If not, however, the simulation study indicates that the LMS algorithm

would be an effective choice.

The simulation results also indicate that if a preamble is to be sent,

the Constrained L.MS algorithm, although capable of meeting the convergence

requirements, would not be the best choice in light of its performance in

comparison to the L1MS algorithm in the presence of a signal. It also requires

more computations for each iteration, although many of these computations can

be performed simultaneously as well.

The performance of the Constrained LMS algorithm in the absence of the

signal, however, introduces many interesting possibilities. TEST4

demonstrated that if preamble was not sent, the Constrained LMS algorithm

would converge in approximately the same number of iterations as the LMS

algorithm. Complicated synchronization and reference generation techniques

could be avoided by simply not sending a preamble. Simply initiate the

algorithm prior to any transmission. It may also be that the transmitted data

had naturally occurring "breaks" in it. During either natural or deliberate

breaks, the algorithm could be re-initiated, minimizing the effects of

interferences. This would require some type of directional power sensing

device. There are many interesting possibilities that could and should be

considered. If the preamble and related synchronization devices are being

generated solely for the benefit of the algorithm, one would have to consider

the advantages of implementing the Constrained LMS algorithm and dispensing

" with the preamble. This would not seriously degrade the convergence

performance, as evidenced by TEST4, and could possibly simplify the overall

system.
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APPENDIX A

COMPLEX LOWPASS EQUIVALENT REPRESENTATION

Digital information signals are often transmitted using some type of

carrier modulation. Signals which have a bandwidth that is much smaller than

the carrier frequency are known as narrowband bandpass signals. For

convenience, it is desirable to reduce the bandpass signals to equivalent

lowpass signals. The carrier component can be dispensed with because it

carries no information.

A real-valued signal s(t) with a frequency concentrated in a narrow band

of frequencies about the carrier frequency, fc' can be expressed as

s(t) = a(t) cos[2vf t + 0(t)]c

where

a(t) = amplitude of s(t)

0(t) = phase of s(t)

2'1'

By expanding the cosine function in the above expression, a second

- representation is obtained. This is written as

9 ' s(t) = a(t) coso(t) cos27f t - a(t) sino(t) sin27f t
c c

= I(t) cos2wf t - Q(t) sin2nf t* c c

where

I(t) - a(t) coso(t)

Q(t) = a(t) sinO(t)

The frequency content of 1(t) and Q(t) is concentrated at low frequencies.

These are lowpass signals.

JII
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Finally, define the complex envelope u(t) as

u(t) - I(t) + jQ(t)

so that

j2rrf t

s(t) = re[u(t) 
e c t

Therefore, a real bandpass signal s(t) is completely specified by its complex

envelope, u(t), if its carrier frequency is known.
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APPENDIX B

USER MANUAL FOR HF ADAPTIVE ANTENNA ARRAY EVALUATION FACILITY

The following is a brief description of the parameters and procedures

needed to operate the simulation. The operations are divided into an input

and an output phase, and will be described separately.

BI.O Input Procedures

As shown in Figure B-I, the input phase is initiated with the command

@INPUT. This command file asks the user to input the name of the experiment

to be performed, and in this case we have chosen TESTI. The result of this is

the creation of a new subdirectory which is given the name EXPERIMENT

TESTI. This subdirectory, then, will provide a location for the simulation

run, and will contain all important output files produced. This, however, is

completely transparent to the user.

Again referring to Figure B-I, we see that as soon as the user determines

*the name of the experiment, he or she is immediately introduced to the first

menu of the actual input program. It is this routine which creates the data

file which is subsequently read by the simulation mainline. Before explaining

the actual variables appearing in this and the remaining menus, we first

consider the methods by which variables are input and new mer.us acquired.

Concentrating again on the first menu, we see that 4 variables appear

(numbered 1 through 4). Assume we wish to change the number of desired

convergences from the default value of 5 to a value of 20. As shown in the

Figure, this is accomplished simply by typing the variable index (4) followed

by a space and the new value (20). The program then returns the instructions

< NEXT ENTRY PLEASE (0 TO REVIEW PAGE, -1 TO LEAVE PAGE > and as shown, 0

redisplays the menu with the new value inserted. A -1 at this point (instead

of a 0) simply moves to the next menu without displaying the change. Of

course, if it is desired to change nothing, it is possible to traverse the
e: entire program simply by typing a -1 after each menu. The data file, then,

will simply contain the default values. It should be noted that this program

continuously updates the default file. That is to say that if a variable is
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changed on a run through the input program, it becomes the new default value -

for the next run.

Now that we may move through the input program, the variables themselves

will be explained. It will be expedient to cover the variables one menu at a

time since, in many cases, the variables within a menu are closely related.

For the following discussion, refer to Figures B-I through B-10.

B1.1 Menu 1: Simulation Parameters

These parameters are general and serve to set up the simulation at its

most basic level. Here, many of the variables are self-explanatory.

I. Number of samples per bit. Sets up sample rate.

2. Signal to Noise Ratio (dB). This is the thermal S/N ratio which is

used to simulate random electrical noise.

3. Simulation Bit Rate. Used to determine the Nyquist bandwidth of the

information signal.

4. Number of simulation convergences desired. To arrive at a

statistical evaluation of the simulation, the system is forced to

converge a number of times. This variable simply determines the

• "number of loops (value = 100).

BI.2 Menu 2: Adaptive Algorithm Options

Here the user is asked to choose the type of algorithm which will control

the simulation.

I. Least Mean Squared Algorithm

2. Constrained Lease Mean Squared Algorithm

3. Update Covariance Algorithm

B1.3 Menu 3: Antenna Array Parameters

This menu gives the user several options to construct the antenna array

to be used in the simulation. The array elements are dipole antennas (whip

above ground).
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I. Number of antenna elements (maximum = 9 elements)

2. Number of incoming signals. This parameter is simply the total

number of impinging signals, including both the desired signal as

well as one or two jammers.

. 3. Dipole equivalent element length (meters). The length of an

equivalent dipole has been assumed to be twice the length of the

actual whip antennas. -

. 4. Carrier frequency of friendly communicator (kHz). This is simply the

frequency, in kilohertz, of the desired signal. The frequency is

used to determine the receiving characteristics of the dipoles.

BI.4 Menu 4: Jammer to Signal Ratios (dB)

Menu 4 is variable in length as dictated by the number of signals entered

earlier. Each jammer to signal ratio may be specified independently and are

used to adjust the jammer powers.

Bl.5 Menu 5: Relative Antenna Element Locations (meters)

Here, the user is allowed to define the actual geometry of the array by

specifying the x and y coordinates of each element. This menu, again, is

variable in length depending on the number of elements entered earlier.

BI.6 Menu 6: Azimuth (PHI) and Elevation (THETA) Coordinates of Incoming

Signals

The user is prompted for the arrival angles of the incoming signals (in

degrees). It is always assumed that the friendly communicator is signal #1.

The azimuth and elevation angles are specified in terms of the spherical

coordinates PHI and THETA. Phi determines the azimuthal coordinate and is

defined to be 0 degrees on the x-axis and increasing toward the y-axis.

Theta, on the other hand, determines the elevation and is defined to be 0

degrees on the z-axis and increasing toward the x-y plane. Note that in our

case, it is only meaningful if theta is in the range from 0* to 90* as this

corresponds to the space above ground.
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BI.7 Menu 7: HF Channel Parameters

* This is just the number of different paths to be simulated with the HF

channel. It essentially chooses the number of taps in the tapped delay line

model employed by the channel.

,* B.8 Menu 8: Delays of Each Propagation Mode - (mS)

Menu 8 is variable in length depending on the number of channel modes

entered in menu 7. Here the delay of each path is given in milliseconds and

is used in the HF channel model to simulate dispersiveness. Note that the

first delay is assumed to be zero, and the others are simply relative to the

first. Also, it should be noticed that the path delays should be integer

multiples of (1/Nyquist Rate). This is necessary, again, due to the

implementation of the HF channel model.

4 B1.9 Menu 9: Attenuation of Each Propagation Mode (dB)

The length of this menu is determined, again, by the number of modes.

The HF channel model contains multipliers which allow signals emerging from

different paths to be attenuated separately. This menu lets the user assign a

different attenuation to each path.

"N B.10 Menu 10: Adaptive Algorithm Convergence Constant

The convergence constant is used by the LMS and constrained LMS r

algorithms to dictate the update step sizes as convergence is taking place.

This constant is quite crucial to the convergence time and overall character

of the convergence, but is also very difficult to obtain. For the most part,

6 only a trial and error type search will produce the optimum value. A rough

estimated value is calculated by the program, but it should not be trusted too

far. The default value may be repeatedly changed until the simulation model

is executed. Note that only 5 decimal places are provided by the input

g program. The convergence value may be specified out to 9 decimal locations,

but unfortunately only 5 are displayed. The actual value may be viewed simply

* by listing the parameter file.
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At this point, as can be seen from Figure B-10, once the convergence

constant is specified, the input program automatically submits the simulation

in batch. The important files generated by the mainline are stored, as was

mentioned earlier, in the user defined directory EXPERIMENTTESTI. When the

'p.. simulation is complete, it is then possible to use the output programs to view

the resulting data. The output phase will be discussed next.

B2.0 Output Procedures

The purpose of this section is to explain the use of the output programs

which allow both a review of the input parameters, as well as the results, of

any test.

To invoke the output procedures, simply type @OUTPUT while stationed at a

graphics terminal. The program responds with the question, "For which

experiment do you wish to see the output?" After the response is given, which
-

in our case is TESTI, the program returns the menu shown in Figure B-I1. We

-. see that there are 8 choices of output, the first 3 simply being a review of

the input parameters of the test, while the remaining choices are actual data

output from the run. To explain the use of this menu, we will step through it

one option at a time.

B2.1 Option 1: Review Antenna Parameters

To invoke this or any other option, simply type the corresponding

number. Thus, in this case, after a 1 is typed, a screen similar to Figure B- I
12 will appear. This screen reminds us of the antenna geometry which was used

in the test as well as the carrier frequency and equivalent dipole lengths of

the antennas. Also displayed are the amplitude and phase distributions for

each element resulting from the adaptation. To return, then, to the main menu

from this option, simply type <return> and Figure B-I will again appear.

B2.2 Option 2: Review Channel Information

The second screen which may be viewed, shown in Figure B-13, is also a

review of parameters, but here it is the channel information which is

displayed. Several other input quantities are also listed such as data rate,
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type of algorithm, number of convergences, and the convergence constant.

Again, to return to the main menu, just type <return>.

B2.3 Option 3: Review Incoming Signal Information

As shown in Figure B-14, this screen lets the user review the arrival

angles of the friendly signal as well as that of the jammers. Also, the

jammer to signal ratios are displayed for each of the jammers.

B2.4 Option 4: View Calculated Results

This screen, arrived at by typing 4 at the main menu level, is shown in

Figure B-15. This is the first screen that actually returns some data from

the simulation run. The values which appear here are the average number of

iterations to converge, as well as the average final signal/interference

ratio. The variance of these quantities is also given, to show the user the

amount of spread which has resulted in the values.

B2.5 Option 5: View Antenna Plot

Typing 5 at the main menu level allows the user to examine the antenna

plots which have resulted from the simulation. This is probably the most

useful portion of the output program, as it allows immediate conformation of

the algorithm performance. Actually when Option 5 is chosen in the main menu,

a new menu appears as shown in Figure B-16. With this menu at hand, the user

is given the capability of examining any cut of the antenna pattern simply by

changing the menu entries. To better understand the capabilities, we will

step through each option of the sub-menu.

* B2.5.1 Sub-Option I: I) Min Convergence Time 2) Avg. 3) Max. -f

When the simulation is finished, the convergence iterations of all

convergences are examined and the corresponding antenna weights of the

slowest, average, and fastest convergences are written to a file. With this

option, it is possible to choose which set of weights will be used in

computation ofthe antenna patterns. These are very similar, however, and

usually indistinguishable in graph form. The default value of this parameter

is set to the average.
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82.5.2 Sub-Option 2: Fixed Angle PHI for Elevation Plot

Here, the user is allowed to choose a fixed azimuth angie in order to
produce an elevation plot. In other words, PHI is held fixed and THETA is

allowed to vary over the range 0 to 180 degrees. For example, if PHI is equal

.. to 0, then the resulting elevation plot will exist in the x-z plane.
L .. ..

B.2.5.3 Sub-Option 3: Fixed Angle THETA for Azimuth Plot

This option is very similar to the previous one in this menu, but here it

is THETA which we fix instead of PHI. This value is used to produce an

azimuth plot at some fixed elevation. For example, if THETA is 90 degrees,

the resulting azimuth plot would exist in the x-y plane. For values other

than 90 degrees, it should be realized that the resulting pattern does not

exist in a plane, but is simply the projection onto a plane of the field

values.

82.5.4 Sub-Option 4: Slice Type 1) Elevation 2) Azimuth

Finally, the user must make a choice to see either an elevation or an

azimuth plot. If one chooses, for example, to see an elevation plot, the PHI

coordinate is set to the value dictated by Option 2, while THETA is varied to

,,. .~form the pattern. Thus, once elevation or azimuth are chosen, then either the

Option 2 or the Option 3 values (respectively) are used; never both. .
"4S..

To actually see an antenna plot, this menu is exited by typing -1 as in

the other menu prograt'q. For the default values of Figure B-16, this produces

. the plot as shown in Figure B-17. Note that for both azimuth and elevation, 0

degrees is to the right on the plot. Thus for an azimuthal plot, right

implies the x-axis, while for elevation, it implies THETA - 0 (z-axis).

At the bottom of the screen on each antenna plot, the program asks

whether one wishes to see more antenna plots. If the response is yes then

O, control is returned to the menu of Figure B-16. On the other hand, if the

answer is no, the user is returned to the main menu (Figure B-1).
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B2.6 Option 6: View Histogram of Convergence Counts

Upon choosing this option, one is able to look at the distribution of %

convergence iterations in histogram form. This is shown in Figure B-18. The

bins are fixed in size and equal to 50. This value works very well for the
0. *-LY-S and constrained LMS, but is slightly large for the update covariance

algorithm. The fixed value of 50 was chosen simply to provide ease of use.

B2.7 Option 7: View S/N Ratio vs. Time Plot

This option produces a plot of the signal to noise ratio versus the
number of iterations. An example of this is shown in Figure B-19. This plot

is always stopped at 6250 iterations in order to display a reasonable number

* of convergences while still providing an acceptable resolution. The purpose

, of the graph is simply to show the convergence characteristics of the test.

B2.8 Option 8: View Error Signal vs. Time Plot

The final available plot is shown in Figure B-20, and represents the

* magnitude of the error signal used by the LMS algorithm for adaptation. This

option may only be invoked if the controlling algorithm of the test is the

LMS, however. It is the only algorithm which makes use of an error signal,

and consequently the mainline only produces the output file for that case.

This plot is also stopped at 6250 iterations to get a reasonable number of

convergences while still providing space for clarity.
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Figure B-1 Menu #1 of input
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OUTPUT- The Main Menu PO I
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Figure B-11 Main menu of output
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Figure B-13 Channel and other assorted information
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-LICE DESCRIPTION
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calculated and then plotted in polar form.
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Figure B-16 Antenna pattern menu
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